DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Mid Semester Examination - Oct 2018

Course: B. Tech in Mechanical Engineering

Subject Name: Fluid Mechanics

Subject Name: Fluid Mechanics

Subject Code: BTEEC 303

Max Marks: 20 Date:-10/10/2018 Duration:-1 Hr.

Instructions to the Students:

- 1. All the questions should be solved in one answer book only attach extra supplement if required.
- 2. Draw neat and labelled diagram whenever necessary.
- 3. Assume suitable data whenever necessary.
- 4. Figures to the right indicate full marks

	4. Figures to the right indicate full marks		
		(Level/CO)	Marks
0.1	1. Weight of liquid that rises in a capillary tube is supported by a) The friction between the tube wall & the liquid	CO1	6
	 b) The atmospheric pressure c) The vertical component of force due to surface tension d) The curvature of the meniscus 2. The metacentric heights of two floating bodies A and B are 1 m and 1.5 m respectively. Select the correct statement. (a) The bodies A and B have equal stability 	CO2	
	 (b) The body A is more stable than body B (c) The body B is more stable than body A 3. The capillary depression in mercury is on account of a) Adhesion being greater than cohesion b) Surface tension being larger than the viscosity c) Cohesion being greater than the adhesion 	CO1	
	d) Vapor pressure being small 4. Which of the following is a case of turbulent flow?	CO3	
0	a) Flow of oil in measuring instruments c) Flow of water through pipe d) Flow of blood in arteries 5. Stream function is defined for a) Flow of a perfect fluid only c) All 3-D flows d) All 2-D incompressible flows d) All irrotational flows only 6. Falling drops of water become spheres due to the property of (a) Surface tension of water (b) Compressibility of water	CO3	
Q.2	(c) Capillarity of water (d) Viscosity of water Solve Any Two of the following		3 X 2
(A)	An incompressible fluid of kinematic viscosity 7.4x10-7 m2/s and specific gravity=0.88 is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates. Predict the shear stress in Pascal on the surfaces of top plate.	CO1	
(B)	Construct the Continuity equation for three dimensional flow.	CO3	
(C)	Show Intensity of Pressure at point is equal to specific weight of fluid at that point.	CO1	
(-)			

Q. 3 Solve Any One of the following

CO₃

The velocity components in two-dimensional flow field are as follows:

$$u = \frac{y^3}{3} + 2x - x^2y \quad v = xy^2 - 2y - \frac{x^3}{3}$$

- 1) Examine flow is possible or not
- 2) Deduce the expression for stream function
- 3) Deduce the expression for velocity potential function
- Estimate the total pressure force and center of pressure for vertical surface CO₂ submerged in liquid.

*** End ***