#### undefined

### DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

### End Semester Examination - Summer 2019

Course: B. Tech in CE/CS/CS&E

Semester: III

**Subject Name: Discrete Mathematics** 

Subject Code: BTCOC302

Max. Marks: 60

Date: 29 / 05 / 2019

Duration: 3 Hrs.

#### Instructions to the Students:

Solve ANY FIVE questions out of the following.

- The level question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- Use of non-programmable scientific calculators is allowed.
- Assume suitable data wherever necessary and mention it clearly.

(Level/ Marks

CO)

# Q.1 Solve Any Three of the following.

A) Among integers 1 to 1000,

Application

- i. How many of them are not divisible by 3 nor by 5 nor by 7?
- ii. How many are not divisible by 5 or 7 but divisible by 3?
- B) Among integers 1 to 300,

C)

Application

- i. How many of them are not divisible by 3 nor by 5 nor by 7?
- ii. How many of them are divisible by 3 but not by 5, nor by 7?
- i. Obtain the Conjunctive Normal Form of  $(p \land q) \lor (\sim p \land q \land r)$

understand

- ii. Obtain the Disjunctive Normal Form of  $\sim (p \rightarrow (q \land r))$
- D) Transcribe the following into logical notation. Let the universe of discourse be the real numbers.
  - i. For any value of x,  $x^2$  is non-negative.
  - ii. For every value of x, there is some value of y such that  $x \cdot y = 1$ .
  - iii. There are positive values of x and y such that  $x \cdot y > 0$ .
  - iv. There is a value of x such that if y is positive, then x + y is negative.

#### Q.2 Solve Any Two of the following.

A)  $X = \{2, 3, 6, 12, 24, 36\}$  R on  $X = \{(x, y) \in R, x \text{ divides } y\}$ 

Synthesis

- (a) Construct Hasse diagram.
- (b) Find maximal and minimal element?
- (c) Is poset a lattice? Justify.
- B) Given  $A = \{1, 2, 3, 4\}$  and  $B = \{x, y, z\}$ . Let R be the following relation from A to B:



# undefined

 $R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}$ 

- (a) Determine the matrix of the relation.
- (b) Find the inverse relation R<sup>-1</sup> of R.
- (c) Determine the domain and range of R.
- C) Given:  $A = \{1, 2, 3, 4\}$ . Consider the following relation in A:

understand

 $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$ 

- (a) Draw its directed graph.
- (b) Is R (i) reflexive, (ii) symmetric, (iii) transitive, or (iv) antisymmetric?
- (c) Find  $R^2 = R \circ R$ .

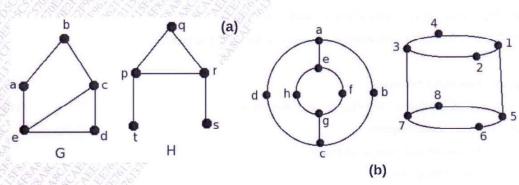
Q.3 Solve the following.

- A) Consider the second-order homogeneous recurrence relation  $a_n = a_{n-1} + 2a_{n-2}$  with the initial Application conditions  $a_0 = 2$ , and  $a_1 = 7$ ,
  - (a) Find the next three terms of the sequence.
  - (b) Find the general solution.
  - (c) Find the unique solution with the given initial conditions.
- B) Solve the following recurrence

Understand

$$t_n = 6t_{n-1} - 11t_{n-2} + 6t_{n-3}$$

with initial conditions


$$t_0 = 1$$
,  $t_1 = 5$ , and  $t_2 = 15$ 

Q.4 Solve Any Two of the following.

A) Define the isomorphic graph. Are the following graphs shown in fig. (a) and (b) isomorphic?

Understand

6



B) (a) Draw the graph K<sub>2, 5</sub>.

Understand

LIBRARY OT STREET OF STREE

# undefined

(b) Define the following terms:

(i) Planar Graph

(ii) Bipartite Graph

(iii) Complete graph

(c) Draw the 2-regular graph with 5 vertices.

C) Write the Euler's Formula. Prove that in planar graph G with p vertices and q edges, where

 $p \ge 3$  then  $q \ge 3p - 6$ .

Q.5 Solve the following.

given below.

A) Use Prim's algorithm to find a minimum a spanning tree in the graph shown in Figure

3 3 3

Understand

B) Construct a Binary Search Tree by inserting the following sequence of numbers:

Application

6

10, 12, 5, 4, 20, 8, 7, 15, 13.

Also Find Preorder, Inorder and Postorder traversal of Binary Search Tree.

Q.6 Solve the following.

A) Define the following terminology:

Knowledge

6

(i) Identity Element

(ii) Monoid

(iii) Group

(iv) Algebraic System

(vi) Inverse Element

B) Consider the group  $G = \{1, 2, 3, 4, 5, 6\}$  under multiplication modulo 7.

Understand

(a) Find the multiplication table of G.

(b) Find the 2<sup>-1</sup>, 3<sup>-1</sup>, 6<sup>-1</sup>.

(c) Find the orders and subgroups generated by 2 and 3.

\*\*\* End \*\*\*

