# DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD - 402103

# End Semester Examination, May 2018

Branch: F.Y. B.Tech. Semester: II

Subject: Engineering Physics (PHY 203)

Marks: 60

Date: 18 / 05 / 2018 Time: 3 Hrs

#### **Instructions to the Students:**

- 1. Each question carry 12 marks
- 2. Attempt any five questions of the following
- 3. Illustrate your answers with neat sketches, diagrams etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly.

## Q. No.1 Attempt the following.

- a. Which are the forces involved in Forced Oscillations? Obtain the differential equation of forced oscillations.
- b. What are ultrasonic waves? Describe magnetostriction method for generating ultrasonic
  waves

#### Q. No. 2 Attempt any two of the following.

- a. In case of Newton's rings in reflected light show that diameter of bright rings is proportional to the square root of odd natural numbers. In Newton's rings, the diameter of a certain bright ring is 0.65 cm and that of tenth ring is 0.95 cm. If  $\lambda = 6000 \text{ A}^0$ , calculate the radius of curvature of a convex lense.
- b. Give the diagrammatic representation of polarized and unpolarized light.
  Explain the method of producing plane polarized light by reflection.
- c. Explain the construction and working of He-Ne laser with neat diagram.

### Q. No. 3 Attempt the following.

a. What is Q-value of nuclear reaction? Calculate the Q-value of given reaction and state whether reaction is exothermic or endothermic.

$$_{3} \text{Li}^{7} + {_{1}}\text{H}^{1} \rightarrow {_{2}}\text{He}^{4} + {_{2}}\text{He}^{4} + \text{Q}$$

Given Mass of Li = 7.01822 Mass of H = 1.00814 Mass of He = 4.00387.





| b. State Heisenberg's Uncertainty Principle and prove that electron cannot exists in the nucleus.                                                                                                                                                                                   | 06   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Q. No. 4 Attempt the following.                                                                                                                                                                                                                                                     |      |
| a. Define Packing Density. Find the packing density in SC, BCC, and FCC lattices.  OR                                                                                                                                                                                               | 06   |
| a. Derive the relation between crystal density 'p' and lattice parameter 'a'. The density of copper is 8980 Kg/ $m^3$ and unit cell dimension is 3.61 $A^0$ . Atomic weight of copper is 63.54. Determine crystal structure.                                                        | ∂_06 |
| b. State and Derive Moseley's law for characteristics X-ray spectrum.                                                                                                                                                                                                               | 06   |
| Q. No. 5 Attempt the following.                                                                                                                                                                                                                                                     |      |
| a. Discuss the different types of magnetic materials interms of magnetic moments.                                                                                                                                                                                                   | 06   |
| a. Prove Bohr magneton $\mu_B=e\hbar/$ 2m. Differnetiate between hard and soft magnetic materials.                                                                                                                                                                                  | 06   |
| b. What is Microscopic Ohm's Law? Differentiate between Type I and Type II superconductors.                                                                                                                                                                                         | 06   |
| Q. No. 6 Attempt any two of the following:                                                                                                                                                                                                                                          |      |
| a. Derive an expression for conductivity in an intrinsic and extrinsic semiconductor. Calculate conductivity of pure silicon when the concentration of carriers is 1.6 X $10^{10}$ / cm <sup>3</sup> , and $\mu_e$ = 1500 cm <sup>2</sup> /V-s, $\mu_h$ = 500 cm <sup>2</sup> /V-s. | 06   |
| b. Explain the terms  i. Dielectric constant  ii. Electric Displacement  iii. Polarizability                                                                                                                                                                                        | 06   |
| c. What is displacement current? Write Maxwell's equations in differnetial and integral form.                                                                                                                                                                                       | 06   |

 $(\cdot)$ 

