DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE -RAIGAD -402 103

End Semester Examination – May - 2019

Branch: Electrical and Electronics Engineering

Sem .:- IV

Subject with Subject Code:- Numerical Methods and Programming (BTEEC404) Marks: 60

Date: - 22-05-2019

Time:-3 Hr.

Instructions to the Students

- 1. Each question carries 12 marks.
- 2. Attempt any five questions of the following.
- 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly

(Marks)

Q.1. Answers the following.

(12)

- a) Define variable and what are the rules for giving name to variable in MATLAB?
- b) Define FOR loop, write syntax and explain with example?

Q.2. Solve the following. (4 marks each)

(12)

- a) Round off the following numbers correct to four significant figures and compute Absolute error, Relative error and Percentage error?
 - (i) 3.26435 (ii) 865830
- b) Use the series $\log_e\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots\right)$ to compute the value of log(1.2) correct to four decimal places.
- c) Find the approximate value of Sin 25° correct to four significant digits using sine series.

Q.3. Solve any two of the following (6 marks each)

(12)

- a) Evaluate $\int_0^6 \frac{dx}{1+x^2} dx$ correct to 3 decimal places by Simpson's 3/8 th Rule.
- b) What are MATLAB functions for Numerical integration, explain any one with example?

c) Give	0	0.1	0.2	0.3	0.4	0.5	0.6
(0°0° 5)	30.13	31.62	32.87	33.64	33.95	33.81	33.24

Find
$$\frac{dy}{dx}$$
 at $x = 0$,

Q.4. Solve the following.

(12)

a) Solve the following simultaneous linear equations using Gauss elimination method.

$$2x_1 + x_2 + 2x_3 + x_4 = 6$$
; $4x_1 + 3x_2 + 3x_3 - 3x_4 = -1$;

$$6x_1 - 6x_2 + 6x_3 + 12x_4 = 36$$
; $2x_1 + 2x_2 - x_3 + x_4 = 10$.

b) Find the roots of the equation Newton-Raphson Method $4x^2 - 3 = 0$.

Q.5. Solve any two of the following (6 marks each)

(12)

a) Use nonlinear regression to fit a parabola to the following data.

x	0.2	0.5	0.8	1.2	1.7	2	2.3
У	500	700	1000	1200	2200	2650	3750

b) An experiment to measure the intensity of light as a function of the distance from the source of the light produced the following data. Find the best fit exponential function = e^{ax+b} , by least squares approximation.

X(distance)	30	35	40	45	50	55	60	65	70
Y	0.85	0.67	0.52	0.42	0.34	0.28	0.24	0.21	0.18
(intensity)		29 89 8 G			\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		1000		

c) Explain with example, the following MATLAB functions, (i) pchip, (ii) Isqnonlin.

Q.6. Solve the following.

(12)

a) Solve the following ordinary differential equation by forth order Runge-Kutta Method.

$$\frac{dy}{dx} = \frac{y^2 + x^2}{2xy}$$
, $y(1) = 2$. Find the $y(1.4)$

b) Solve the following ordinary differential equation by Euler's Explicit Method.

$$\frac{dy}{dx} = \frac{x-y}{x+y}$$
, $x_0 = 0$, $y_0 = 1$. Find the solution at $x = 0.2$ with step-size $h = 0.1$
