undefined

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - RAIGAD -402 103

Semester Examination - May - 2019

Branch: B. Tech. (Computer Engineering)

Sem: IV

Subject with Subject Code: Numerical Methods [BTCOE405A]

Marks:60

Date: - 24/05/2019

Time: 3 Hrs

Instructions to the Students:

- 1. All Questions are Compulsory
- 2. Use of Non-programmable calculator is allowed
- 3. Figures to right indicates full marks
- 4. Assume suitable data wherever necessary and mention it clearly

2		Marks						
Q.1	Solve any Three.							
(A)	Find a root of $x^3 - 4x - 9 = 0$ using bisection method in four stages.							
(B)	Find the root of $2x - log_{10}x = 7$ which lies between 3.5 and 4 by false postion method.							
(C)	Find the real root of $x^3 - 2x - 5 = 0$ correct to three decimal places using Newton-							
	Raphson method.							
(D)	Derive a formula to compute $\sqrt[3]{N}$ where N is a positive number and hence estimate $\sqrt[3]{11}$	04						
Q. 2	Solve any Two.							
(A)	Solve the following system of equations by Gauss elimination method.	06						
	x + 4y - z = -5,							
	x+y-6z=-12,							
	3x - y - z = 4							
(B)	Using Gauss-Jordan method solve	06						
2	x + 2y + 6z = 22,							
	3x + 4y + z = 26,							
	6x - y - z = 19							
(C)	Apply Gauss-Seidal iteration method to solve the equations	06						
	20x + y - 2z = 17,							
	3x + 20y - z = -18,							
	2x - 3y + 20z = 25							

undefined

Q.3 Solve any Three.

Given $u_0 = 2$, $u_1 = 10$, $u_2 = 81$, $u_3 = 200$, $u_4 = 100$, $u_5 = 6$, (A) Find $\Delta^5 u_0$

The table gives the distances in nautical miles of the visible horizon for the given heights in (B) feet above the earth's surface:

x = height:	100	150	200	250	300	350	400
y = distance :	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Use Newton's backward interpolation formula to find the value of y when x = 410.

Use Newton's forward difference formula to find the number of persons getting wages less (C) than Rs. 15

Wages in Rs.	0-10	10-20	20-30	30-40
No. of Persons:	9	30	35	42

Use Stirling's Central Interpolation to find the value of y for x=35 from the following table (D)

x:	20	30	40	50
f(x):	512	439	346	243

04

Solve any Three Q.4

Evaluate $\int_0^1 (\sqrt{\sin x + \cos x}) dx$ by trapezoidal rule by using the following data (A)

		Л	
¥	,	•	φ.

x:	0	0.2	0.4	0.6	0.8	1
<i>y</i> :	1	1.0857	1.1448	1.1790	1.1891	1.1755

undefined

(B) A rocket is launched from the ground. Its acceleration is registered during first 80 seconds and given in the following table.

t(sec):	0	10	20	30	40	50	60	70	80
$a(m/s^2)$:	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

Using Simpson's one-third rule, find the velocity at t = 80.

(C) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Simpson's 3/8 th rule.

04

Use Simpson's one third rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking seven ordinates.

04

- Q.5 Solve any Two
- (A) Using Runge-Kutta method of order four, find the approximate value of y at x = 0.2 and x = 0.4, taking h = 0.2. Given $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ and y(0) = 1
- (B) Using picard method find the value of y when x = 0.1 $\frac{dy}{dx} = x y^2$, and y = 1 at x = 0.
- Using Talyor's Series method obtain the solution of the following differential equation (correct upto four places of decimals). $\frac{dy}{dx} = 3x + y^2 \text{ with } x_0 = 0, y_0 = 1 \text{ at } x = 0.1$