

Carbon Volume 192, 15 June 2022, Pages 153-161

Ultra-high energy stored into multi-layered functional porous carbon tubes enabled by high-rate intercalated pseudocapacitance

Shobhanth P. Gupta ^a, A.R. Shakeelur Raheman^b, Ashim Gurung ^c, Qiquan Qiao ^{c, d}, Dattatray J. Late ^e, Pravin S. Walke ^a 은 쩓

- ^a National Centre for Nanosciences and Nanotechnology, University of Mumbai, (NCNNUM), Mumbai, 400098, India
- Department of Applied Sciences, Shri Vile Parle Kelavani Mandal's Institute of Technology, Dhule, 424001,
 India
- ^c Department of Electrical Engineering and Computer Science, Center for Advanced Photovoltaics, South Dakota State University, Brookings, SD, 57007, USA
- ^d Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, 13244, USA
- ^e Centre for Nanoscience and Nanotechnology, Amity University, Mumbai, 410206, India

Received 10 December 2021, Revised 2 February 2022, Accepted 17 February 2022, Available online 25 February 2022, Version of Record 4 March 2022.

https://doi.org/10.1016/j.carbon.2022.02.042

Get rights and content

Highlights

- The multi-layered, mesoposous, functional carbon tubes with a density of 1 g $\rm cm^{-3}$ is derived from Mushroom.
- We report a high gravimetric and volumetric capacitance of 995 F $\rm g^{-1}$ and 895 F $\rm cm^{-3}$ respectively.