DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD Semester Winter Examination – December - 2019

Branch: B. Tech. (Common to all)

Semester: II

Subject with Subject Code: Engineering Mathematics – II (BTMA 201) Marks: 60

Date: 09.12.2019 Time: 3 Hrs.

Instructions to the Students

- 1. Attempt any five questions of the following.
- 2. Illustrate your answers with neat sketches, diagrams, etc., wherever necessary.
- 3. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly.

Q. 1

(a) If the sum and product of two complex numbers are real, show that those two numbers must be either real or conjugate. [4 Marks]

(b) Solve the equation $x^6 - i = 0$.

[4 Marks]

(c) If tan(A + iB) = x + iy, prove that

(i)
$$\tan 2A = \frac{2x}{1-x^2-y^2}$$

(ii)
$$\tanh 2B = \frac{2y}{1+x^2+y^2}$$

[4 Marks]

O. 2

(a) Solve:
$$\cos^2 x \frac{dy}{dx} + y = \tan x$$
.

[4 Marks]

(b) Solve:
$$(x^2 + y^2)dx - xy dy = 0$$
.

[4 Marks]

(c) A body falling from rest is subjected to the force of gravity and an air resistance of $\left(\frac{n^2}{g}\right)$ times square of the velocity. Show that the distance travelled by the body in t seconds is $\frac{g}{n^2}\log\cos h$ (nt).

[4 Marks]

Q. 3 Solve any THREE:

(a) Solve
$$(D^6 - D^4)y = x^2$$

[4 Marks]

(b) Solve
$$(D^2 - 2D + 1)y = x e^x \cos x$$
.

[4 Marks]

(c) Solve by the method of variation of parameters:
$$\frac{d^2y}{dx^2} + y = \csc x$$
.

[4 Marks]

(d) Solve:
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$$
.

[4 Marks]

Q. 4 Solve any TWO:

(a) Find the Fourier series of the function f(x) = x in the interval $(0, 2\pi)$. [6 Marks]

(b) Find the Fourier series expansion for the function $f(x) = x - x^2$ in -1 < x < 1. [6 Marks]

(c) Expand the function $f(x) = \pi x - x^2$ in a half-range sine series in the interval $(0, \pi)$. [6 Marks]

Q. 5 Solve any THREE

(a) Find the value of the constant λ such that the vector field defined by

 $\vec{F} = (2x^2y^2 + z^2)\hat{i} + (3xy^3 - x^2z)\hat{j} + (\lambda xy^2z + xy)\hat{k}$ is solenoidal.

[4 Marks]

(b) Find $\nabla \cdot \vec{F}$, where $\vec{F} = \left(\frac{x}{r}\right)\hat{i} + \left(\frac{y}{r}\right)\hat{j} + \left(\frac{z}{r}\right)\hat{k}$.

[4 Marks]

(c) Find **curl** \vec{F} , where $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$.

[4 Marks]

(d) If \vec{r} is a position vector with $r = |\vec{r}|$, show that

$$\nabla^2 r^n = n(n+1)r^{n-2}.$$

[4 Marks]

Q. 6:

(a) Find the values of the line integral $\int_C \vec{F} \cdot d\vec{r}$ along the path

 $y^2 = x$ joining the points (0,0) and (1,1) provided that $\vec{F} = x^2 \hat{\imath} + y^2 \hat{\jmath}$.

[4 Marks]

(b) Verify the Green's theorem for $\int_C \{(xy + y^2)dx + x^2dy\}$

where C is bounded by y = x and $y = x^2$.

[4 Marks]

(c) Show that $\iiint_{v} \frac{dv}{r^2} = \iint_{s} \frac{\vec{r} \cdot \hat{n}}{r^2} ds$.

[4 Marks]