## DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Branch: IT

Course: B. Tech.

## **Regular End Semester Examination – Summer 2022**

Semester:VI

Subject Code & Name: Operating Systems Date: 17/08/2022 Duration: 3.45 Hr. Max Marks: 60 Instructions to the Students: 1. All the questions are compulsory. 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. (Level/CO) Marks Q. 1 Solve Any Two of the following. A) Define OS. List and explain any four services provided by an operating Remember / system. CO<sub>2</sub> B) Define process. Explain process control block. Remember / 6 CO<sub>2</sub> C) Define system call. Enlist and explain types of system calls. Remember / 6 CO<sub>2</sub> Q.2 Solve Any Two of the following. A) Draw and explain process state diagram. **Understand** / 6 **CO3** B) Consider the following set of processes, with the length of the CPU Apply / CO3 6 burst given in miliseconds: **Process Burst Time Arrival Time P1** P2 1 **P3** 3 6 **P4** 7 6 P5 a. Draw Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: SJF preemptive and SJF non-preemptive. b. What is the average waiting time in each case? C) Describe in brief: Understand / 6 i) Context switch ii) Medium term scheduler iii) External **CO3** fragmentation iv) Thrashing Q. 3 Solve Any One of the following. A) consider a system with five processes Po through P4 and three re- Apply / CO4 8 source types A, B, and C. Resource type A has ten instances, resource type B has five instances, and resource type C has seven instances.

Suppose that, at time T0, the following snapshot of the system has been taken:

| Allocation |     | Max   | Available |
|------------|-----|-------|-----------|
|            | ABC | ABC   | A B C     |
| <b>P0</b>  | 010 | 753   | 3 3 2     |
| <b>P1</b>  | 200 | 3 2 2 |           |
| <b>P2</b>  | 302 | 902   |           |
| <b>P3</b>  | 211 | 2 2 2 |           |
| <b>P4</b>  | 002 | 433   |           |

Calculate need matrix using Banker's algorithm. Justify safe sequence if the system is in safe state.

| B)         | Explain paging with suitable diagram.                                                                                                                                                                 | Understand / CO5    | 8      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|
| Q.4        | Solve Any Two of the following.                                                                                                                                                                       |                     | 3P. A. |
| A)         | Define Semaphore. List and explain the types of Semaphores.                                                                                                                                           | Understand / CO5    | 6      |
| B)         | List and explain in brief classical problems of process synchronization.                                                                                                                              | Understand /<br>CO5 | 6      |
| C)         | List and explain necessary and sufficient conditions of deadlock.                                                                                                                                     | Remember / CO4      | 6      |
| Q. 5       | Solve Any Two of the following.                                                                                                                                                                       |                     |        |
| A)         | Explain any two disk scheduling algorithms with suitable example.                                                                                                                                     | Understand / CO6    | 8      |
| B)         | Consider page reference string given below: 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 Calculate page fault ratio using First-in First-out, Optimal and Least Recently Used page replacement algorithms. | Apply / CO5         | 8      |
| <b>(C)</b> | Explain RAID disk organization with suitable diagram.                                                                                                                                                 | Understand / CO6    | 8      |

\*\*\* End \*\*\*